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Using the convex semidefinite programming method and superoperator formalism we
obtain the finite quantum tomography of some mixed quantum states such as: truncated
coherent states tomography, phase tomography and coherent spin state tomography,
qudit tomography, N -qubit tomography, where that obtained results are in agreement
with those of References (Buzek et al., Chaos, Solitons and Fractals 10 (1999) 981;
Schack and Caves, Separable states of N quantum bits. In: Proceedings of the X.
International Symposium on Theoretical Electrical Engineering, 73. W. Mathis and
T. Schindler, eds. Otto-von-Guericke University of Magdeburg, Germany (1999); Pegg
and Barnett Physical Review A 39 (1989) 1665; Barnett and Pegg Journal of Modern
Optics 36 (1989) 7; St. Weigert Acta Physica Slov. 4 (1999) 613).
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1. INTRODUCTION

The quantum complementarity principle does not allow to recover the quan-
tum state from measurements on a single system, unless we have some prior
information on it. On the other hand, the no cloning theorem ensures that it is not
possible to make exact copies of a quantum system, without having prior knowl-
edge of its state. Hence, the only possibility for devising a state reconstruction
procedure is to provide a measuring strategy that employs numerous identical
(although unknown) copies of the system, so that different measurements may be
performed on each of the copies.

The problem of state estimation resorts essentially to estimating arbitrary
operators of a quantum system by using the result of measurements of a set of
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observables. If this set of observables is sufficient to give full knowledge of the
system state, then we define it as a quorum. Notice that, in general, a system may
allow various, different quorums. Quantum tomography that was born (Raymer
and Schleich, 1997; McAlister and Raymer, 1997) as a state reconstruction tech-
nique in the optical domain, makes use of the results of the quorum measurements
in order to reconstruct the expectation value of arbitrary operators (even not ob-
servables) acting on the system Hilbert space.

On the other hand, a precise knowledge of the density matrix would require an
infinite number of measurements on identical preparations of radiation. However,
in real experiments one has only a finite number of data at ones disposal, and thus
a statistical analysis and errors estimation are needed.

Authors of Buzek et al. (1999) presented several schemes for a reconstruction
of states of quantum systems from measured data:

(1) The maximum entropy (MaxEnt) principle can be efficiently used for
an estimation of quantum states (i.e., density operators or Wigner functions) on
incomplete observation levels, when just a fraction of system observables are
measured (i.e., the mean values of these observables are known from the measure-
ment). In the limit, when all system observables (i.e., the quorum of observables)
are measured, the MaxEnt principle leads to a complete reconstruction of quantum
states, i.e. quantum states are uniquely determined.

(2) When only a finite number of identically prepared systems are measured,
then the measured data contain only information about frequencies of appearances
of eigenstates of certain observables. They showed that in this case states of
quantum systems can be estimated with the help of quantum Bayesian inference.

(3) They showed how to construct the optimal generalized measurement of
a finite number of identically prepared quantum systems which results in the
estimation of a quantum state with the highest fidelity and showed how this
optimal measurement can in principle be realized. They analyzed two physically
interesting examples—a reconstruction of states of a spin-1/2 and an estimation
of phase shifts (Buzek et al., 1999).

On the other hand, over the past years, semidefinite programming (SDP)
has been recognized as valuable numerical tools for control system analysis and
design. In (SDP) one minimizes a linear function subject to the constraint that an
affine combination of symmetric matrices is positive semidefinite. SDP, has been
studied (under various names) as far back as the 1940s. Subsequent research in
semidefinite programming during the 1990s was driven by applications in com-
binatorial optimization (Goemans and Williamson, 1995), communications and
signal processing (Luo, 2003; Davidson et al., 2000; Ma et al., 2002), and other
areas of engineering (Boyd et al., 1994). Although semidefinite programming is
designed to be applied in numerical methods it can be used for analytic computa-
tions, too. Some authors try to use the SDP to construct an explicit entanglement
witness (Doherty et al., 2002; Parrilo et al., 2002). Kitaev used semidefinite
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programming duality to prove the impossibility of quantum coin flipping (Ki-
taev, 2002), and Rains gave bounds on distillable entanglement using semidefinite
programming (Rains, 2001). In the context of quantum computation, Barnum,
et al., reformulated quantum query complexity in terms of a semidefinite program
(Barnum et al., 2003). The problem of finding the optimal measurement to dis-
tinguish between a set of quantum states was first formulated as a semidefinite
program in 1972 by Holevo, who gave optimality conditions equivalent to the com-
plementary slackness conditions (Helstrom, 1976). Recently, Eldar et al., showed
that the optimal measurements can be found efficiently by solving the dual fol-
lowed by the use of linear programming (Eldar et al., 2003). Also in Lawrence
(2003) used semidefinite programming to show that the standard algorithm imple-
ments the optimal set of measurements. All of the above mentioned applications
indicate that the method of SDP is very useful.

In a laboratory and in practice, we always deal with finite ensembles of copies
of the measured system. This implies the need of developing novel tools specially
designed to process realistic and finite experimental samples. Then it is necessary
to truncate the Hilbert space to a FD basis (Buzek and Drobny, 2000). In this paper
we use the SDP method in order to obtain quantum tomography with truncating
the infinite Banach space to a FD basis.

The paper is organized as follows:
In Section 2 we define semidefinite programming. In Section 3 we define super-
operator formalism. In Section 4 we describe the projection method and using
SDP method and superoperator formalism obtain finite quantum tomography. In
Section 5 we obtain truncated generalized coherent states quantum tomography
with semidefinite programming, In Section 5 we obtain some typical finite quan-
tum tomographic examples, such as: finite dimensional phase tomography and
coherent spin state tomography, finite dimensional qudit quantum tomography,
N-qubit tomography, with SDP method and superoperator formalism. The paper
is ended with a brief conclusion.

2. SEMI-DEFINITE PROGRAMMING

A SDP is a particular type of convex optimization problem (Vandenberghe
and Boyd, 1996). A SDP problem requires minimizing a linear function subject to a
linear matrix inequality (LMI) constraint (Vandenberghe and Boyd, unpublished):

minimize P = cT x

subject to F (x) ≥ 0,
(2.1)

where c is a given vector, xT = (x1, . . . , xn), and F (x) = F0 + ∑
i xiFi, for some

fixed hermitian matrices Fi . The inequality sign in F (x) ≥ 0 means that F (x) is
positive semidefinite.
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This problem is called the primal problem. Vectors x whose components are
the variables of the problem and satisfy the constraint F (x) ≥ 0 are called primal
feasible points, and if they satisfy F (x) > 0 they are called strictly feasible points.
The minimal objective value cT x is by convention denoted as P∗ and is called the
primal optimal value.

Due to the convexity of set of feasible points, SDP has a nice duality structure,
with, the associated dual program being:

maximize −T r[F0Z]

Z ≥ 0

T r[FiZ] = ci .

(2.2)

Here the variable is the real symmetric (or Hermitean) matrix Z, and the
data c, Fi are the same as in the primal problem. Correspondingly, matrices Z

satisfying the constraints are called dual feasible (or strictly dual feasible if Z > 0).
The maximal objective value −T rF0Z, the dual optimal value, is denoted as d∗.

The objective value of a primal(dual) feasible point is an upper (lower) bound
on P∗(d∗). The main reason why one is interested in the dual problem is that one
can prove that d∗ ≤ P∗, and under relatively mild assumptions, we can have
P∗ = d∗. If the equality holds, one can prove the following optimality condition
on x:

A primal feasible x and a dual feasible Z are optimal which is denoted by x̂

and Ẑ if and only if

F (x̂)Ẑ = ẐF (x̂) = 0. (2.3)

This latter condition is called the complementary slackness condition.
In one way or another, numerical methods for solving SDP problems always

exploit the inequality d ≤ d∗ ≤ P∗ ≤ P , where d and P are the objective values
for any dual feasible point and primal feasible point, respectively. The difference

P − d = cT x + T r[F0Z] = T r[F (x)Z] ≥ 0 (2.4)

is called the duality gap. If the equality d∗ = P∗ holds, i.e., the optimal duality
gap is zero, then we say that strong duality holds.

3. SUPEROPERATOR FORMALISM

In order to treat discrete and continuous density operator representations on
an equal footing, we introduce the following superoperator formalism. The set of
linear operators acting on a D-dimensional Hilbert space H is a D2-dimensional
complex vector space L(H). Let us introduce operator “kets” | A) = A and “bras”
(A |= A†, distinguished from vector kets and bras by the use of round brackets.
Then the natural inner product on L(H ), the trace-norm inner product, can be
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written as (A | B) = tr(A†B). The notation S =| A)(B | defines a superoperator
S acting like

S | X) =| A)(B | X) = tr(B†X)A. (3.5)

Now let the set {| Nj )} constitute a (complete or overcomplete) operator basis;
i.e., let the operator kets | Nj ) span the vector space L(H ). It follows that the
superoperator G defined by

G ≡
∑

j

| Nj )(Nj | (3.6)

is invertible. The operators

Qj ≡ G−1 | Nj ) (3.7)

form a dual basis, which gives rise to the following resolutions of the superoperator
identity:

1 =
∑

j

| Qj )(Nj |=
∑

j

| Nj )(Qj | . (3.8)

An arbitrary operator A can be expanded as

A =
∑

j

| Nj )(Qj | A) =
∑

j

Nj tr(Q†
jA) (3.9)

and

A =
∑

j

| Qj )(Nj | A) =
∑

j

Qj tr(N†
j A). (3.10)

These expansions are unique if and only if the operators Nj are linearly indepen-
dent (Schack and Caves, 1999).

4. PROJECTION METHOD AS A SEMIDEFINITE PROGRAMMING
AND FINITE QUANTUM TOMOGRAPHY

4.1. Bases and Frames

In this section we collect some rudimentary facts that will be used in what
follows.

A basis is one of the most fundamental concepts in linear algebra.
A set of linearly independent vectors {ei}ni=1 in a FD complex vector space

V is a basis for V if, for each f ∈ V , there exist coefficients c1, c2, . . . , cn ∈ C
such that

f =
n∑

i=1

ciei . (4.11)
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The independence condition implies that the coefficients c1, . . . , cn are unique.
For infinite dimensional (ID) vector spaces, the concept of a basis is more

complicated.
An {ei}∞i=1 ⊆ H is an orthonormal system (ONS) Christensen and Jensen

(1999) if

〈ei, ej 〉 = δij . (4.12)

An ONS {ei}∞i=1 is an orthonormal basis (ONB) if

H = ¯span{ei}∞i=1 (4.13)

when {ei}∞i=1 is an ONB, each f ∈ H can be written as

f =
∞∑

i=1

〈f, ei〉ei . (4.14)

Definition. Two sequences {xi} and {yi} in a Hilbert space H are said to be
biorthonormal, if

〈xi, yj 〉 = δij . (4.15)

A sequence {yi} biorthogonal to a basis {xi} for H is itself a basis for H, and we
have for each x the representation

x =
∞∑

i=1

〈x, yi〉xi, and x =
∞∑

i=1

〈x, xi〉yi. (4.16)

Frame: A family of elements {fi}i∈I ⊆ H is called a frame for H if there exist
constants A,B > 0 such that

A||f ||2 ≤
∑

i∈I

|〈f, fi〉|2 ≤ B||f ||2, ∀f ∈ H, (4.17)

where I is a countable index set. The numbers A,B are called frame bounds. They
are not unique. The optimal frame bounds are the biggest possible value for A and
the smallest possible value for B in (4.17). If we can choose A = B, the frame
is called tight. If a frame ceases to be a frame when any element is removed, the
frame is said to be exact. Since a frame {fi}i∈I is a Bessel sequence, the operator

T : l2(I ) → H, T {ci i∈I } =
∑

i∈I

cifi, (4.18)

is bounded and linear; T is sometimes called the preframe operator. The adjoint
operator is given by

T ∗: H → l2(I ), T ∗f = {〈f, fi〉}∞i=1. (4.19)
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By composing the operators T and T ∗, we obtain the operator

S: H → H, Sf = T T ∗f =
∞∑

i=1

〈f, fi〉fi, (4.20)

where S is called the frame operator with

AI ≤ S ≤ BI. (4.21)

The frame operator is a bounded, positive, and invertible operator.

Proposition. Let {fi}i∈I be a frame. Then, the optimal bounds are given by
Christensen and Jensen (1999)

A = ||S−1||−1, B = ||S||. (4.22)

4.2. Frames in Finite-Dimensional Spaces

We investigate the properties of a frame generated by a finite subset of a
Hilbert space.

Calculation of the frame coefficients {〈f, S−1fi〉} involves inversion of the
frame operator S. In practice it can be a problem if the underlying Hilbert space is
infinite dimensional. There is an approach to the problem as follows (Christensen
and Jensen, 1999):

Given the frame {fi}∞i=1 we consider finite subsets {fi}ni=1, n ∈ N . It can be
shown that {fi}ni=1 is a frame for Hn = span{fi}n1 and the corresponding frame
operator is Sn: Hn → Hn and the orthogonal projection Pn on Hn is

Pnf =
n∑

i=1

〈
f, S−1

n fi

〉
fi, f ∈ H. (4.23)

For n → ∞, Pnf → f = ∑∞
i=1〈f, S−1fi〉fi , one can hope that the coefficients

〈f, S−1
n fi〉 converges to the frame coefficients for f , i.e., that

〈
f, S−1

n fi

〉 → 〈f, S−1fi〉 as n → ∞, ∀i ∈ I, ∀f ∈ H. (4.24)

If (4.24) is satisfied we say that the projection method works. In this case the frame
coefficients can be approximated as close as we want using FD methods, i.e., linear
algebra, since Sn is an operator on the FD space Hn. This is a very important
property for applications: for example, it makes it possible to use computers to
approximate the frame coefficients.

Proposition 4.1. Let {fi}i∈I be a frame and that In ↗ I is an increasing family
of finite index sets. Then S−1

n fi → S−1fi weakly as n → ∞ for all i ∈ I if and
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only if for any i ∈ I there exists a constant ci such that
∥
∥S−1

n fi

∥
∥ ≤ ci ∀n such that i ∈ In (4.25)

A frame {fi} is a Riesz basis if and only if it is finitely independent, i.e., any finite
subset is linearly independent, and there exists an increasing family of finite index
set In ↗ I such that S−1

n fi → S−1fi weakly as n → ∞ for all i ∈ I (Kim and
Lim, 1997).

Our results are must conveniently formulated in operator terminology. Let
S, {Sn}∞n=1 be operators from H into the Hilbert space (K, 〈∗, ∗〉K). We say that
Sn → S in strong operator topology if Snf → Sf, ∀f ∈ H, and that Sn → S in
the weak operator topology if 〈g, Snf 〉K → 〈g, Sf 〉K, ∀f ∈ H and, ∀g ∈ K.

Proposition 4.2. The strong projection method works for every Riesz frame
(Casazza et al., 2003).

4.3. Projection Method and Semidefinite Programming

Now, using semidefinite programming we study the projection method.
At first we suppose that bases is orthogonal in infinite dimensional Hilbert

space.
The corresponding frame operator is tight frame with bounds A = B = 1,

i.e., we have:

S =
∞∑

i=1

|ei〉〈ei | = I. (4.26)

We will try to approximate it with a frame operator in n-dimensional Hilbert space.
i.e.,

Sn =
n∑

i=1

λi |ei〉〈ei |. (4.27)

It is easy to see that every finite collection of elements in H is a frame for its span.
According to SDP and complementary slackness we have

Ẑ(S − Sn) = Ẑ

(

I −
n∑

i=1

λi |ei〉〈ei |
)

= 0, (4.28)

or equivalently,

Ẑ(S − Sn) = Ẑ

(
n∑

i=1

(1 − λi)|ei〉〈ei | +
∞∑

i=n+1

|ei〉〈ei |
)

= 0. (4.29)

Now, taking its matrix element between |ψj 〉, 1 ≤ j ≤ n we get

〈ψj |Ẑ|ψj 〉(1 − λj ) = 0 ⇒ λj = 1, 1 ≤ j ≤ n (4.30)



Finite Quantum Tomography and Semidefinite Programming 1479

and if n + 1 ≤ j ≤ ∞, 〈ψj |Ẑ|ψj 〉 = 0 and therefore we conclude |ψj 〉 ∈ kerẐ.

Finally the frame operator can be defined as

Sn =
n∑

i=1

|ei〉〈ei |.

Now, if we repeat the above calculation for any operator in the infinite dimensional
space we will get this operator in the FD space (projected operator).

If states be non-orthonormal, in this case we have

Ẑ

( ∞∑

i=1

|xi〉〈xi | −
n∑

i=1

λi |xi〉〈xi |
)

= 0. (4.31)

Again, taking its matrix element between |xj 〉, |yj 〉 1 ≤ j ≤ n where |yj 〉 is the
dual state, we get

〈xj |Ẑ
(

n∑

i=1

(1 − λi)|xi〉〈xi | +
∞∑

i=n+1

|xi〉〈xi |
)

|yj 〉 = 0, (4.32)

then

〈xj |Ẑ|xj 〉(1 − λj ) = 0 ⇒ λj = 1, 1 ≤ j ≤ n, (4.33)

and again for n + 1 ≤ j ≤ ∞ we conclude that |xj 〉 ∈ kerẐ obviously the frame
operator is defined as

Sn =
n∑

i=1

|xi〉〈xi |.

which is a projection operator.
If we repeat the above calculation for frame, we obtain Sn = ∑n

i=1 |fi〉〈fi |.
In the following section we find the finite quantum tomography using semidef-

inite programming.

4.4. Finite Quantum Tomography Via Semidefinite Programming

Quantum state reconstruction schemes can be understood as an a posterior
estimation of density operator of a given quantum mechanical system based on
data obtained with the help of a macroscopic measurement apparatus. Only if
an infinite ensemble is given can one find out the state. But infinite ensembles
don’t exist in practice. In a laboratory and in practice, we always deal with finite
ensembles of copies of the measured system. This implies the need of developing
novel tools specially designed to process realistic and finite experimental samples.
Then it is necessary to truncate the Hilbert space to a FD basis (Buzek and Drobny,
2000).
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Now in this work using the projection method and semidefinite programming
we express the mathematical structure correspond to finite tomography and obtain
the tomographic formula based on finite Hilbert space.

At first, from (3.9) or (3.10) we assume that

ρ =
∑

j

| Qj )(Nj | ρ) =
∑

j

Qj tr(N†
j ρ), (4.34)

is a density matrix in infinite dimensional Banach space, where {Nj } constitute a
operator basis in superoperator formalism. Also let

ρn =
n∑

j=1

λj | Nj ), (4.35)

be a density matrix in FD banach space which is obtained from truncating the ID
Banach space.

Using the properties of density matrix we have

ρ − ρn ≥ 0, (4.36)

which in comparison with semidefinite programming we get

F0 = ρ, Fj =| Nj ) and xj = λj , for j = 1, . . . , n.

If we use the complementary slackness condition, and for a feasible (Ẑ, λj max),
for j = 1, . . . , n, we have

Ẑ(ρ − ρn) = 0, (4.37)

or

Ẑ

⎛

⎝ρ −
n∑

j=1

λj | Nj )

⎞

⎠ = 0. (4.38)

Using resolution of the superoperator identity (3.8) we obtain

∑

i

Ẑ | Ni)(Qi |
[

ρ −
∑

j

λj | Nj )

]

= 0, for j = 1, . . . , n (4.39)

Therefore, we have
∑

i

(Ẑ | Ni)[(Qi | ρ) − λi] = 0, i = 1, . . . n. (4.40)

It is obvious that (Ẑ | Ni) = 0 for i > n then we conclude that | Ni) ∈ kerẐ. Then
we obtain

λi = (Qi | ρ) = tr[ρQ
†
i ]. (4.41)
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Therefore we obtain the tomography formula in FD Banach space as the
follow:

ρn =
n∑

i=1

| Ni)(Qi | ρ) =
n∑

i=1

| Ni)tr[ρQ
†
i ]. (4.42)

In the following, we will consider density matrix with orthogonal states of the
form:

ρ =
∞∑

j

tr(ρ|ψj 〉〈ψj |)|ψj 〉〈ψj |

where is a density matrix in ID Hilbert space. In the superoperator formalism we
can write

| Nj ) =| Qj ) = |ψj 〉〈ψj | (4.43)

Also let

ρn =
n∑

j=1

λj | Nj ) =
n∑

j=1

λj |ψj 〉〈ψj |

be a density matrix in FD Hilbert space which is obtained from truncating the
infinite dimensional Hilbert space and |ψ〉 is an orthogonal state.

Using (4.42) we obtain the tomography formula in finite dimensional Hilbert
space as the follow:

ρn =
n∑

j=1

tr(ρ|ψj 〉〈ψj |)|ψj 〉〈ψj |. (4.44)

In the following we describe some examples for FD quantum tomogarphy.

5. TRUNCATED COHERENT STATES QUANTUM TOMOGRAPHY
WITH SEMIDEFINITE PROGRAMMING

Quantum homodyne tomography is used in quantum optic in the measurement
of the quantum state of light (Glauber Cs). In this case, we get (D’Ariano, 1990;
D’Ariano et al., 2001):

ρ̂ =
∫

C

d2α

π
T r[ρ̂Û †(α)]Û (α), (5.45)

where Û (α) = exp(αa† − α∗a) is a displacement operator.
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For the complex Fourier transform of the displacement operator Û (D’Ariano
et al., 1996)

Û (α) =
∫

d2ξ

π
Û (ξ ) exp(αξ ∗ − α∗ξ ), (5.46)

the expansion of the operator in terms of the operator Û (α) is given by

ρ̂ =
∫

d2α

π
W (α)Û (α), (5.47)

where W (α) is Wigner function.
In Miquel et al. (2002) formalism was applied to represent the states and the

evolution of a quantum system in phase space in FD Hilbert space and, finally,
it was discussed how to perform direct measurement to determine the wigner
function. This approach was based on the use of phase space point operator
to define Wigner function. For discrete systems we can define finite translation
operators Q̂ and V̂ , which generate finite translation in position and momentum,
respectively. The translation operator Q̂ generates cyclic shifts in the position
basis and is diagonal in momentum basis:

Q̂m | n〉 =| n + m〉, Q̂m | k〉 = exp(−2πimk/N ) | k〉. (5.48)

Similarly, the operator V̂ is a shift in the momentum basis and is diagonal in
position basis:

V̂ m | k〉 =| k + m〉, V̂ m | n〉 = exp(2πimn/N ) | n〉. (5.49)

Now by identifying the corresponding displacement operators, the discrete ana-
logue of the phase space translation operator is given by:

Û (q, p) = Q̂qV̂ p exp[(iπpq/N )]. (5.50)

Here we can define the point operator as:

Â(q, p) = 1

(2N )2

2N−1∑

n,m=0

π̂ (m, k) exp

(

−2πi
(kq − mp)

2N

)

, (5.51)

or as:

Â(α) = 1

2N
Q̂qR̂V̂ −p exp (iπpq/N) . (5.52)

That R̂ is parity operator and it is worth noting that the phase space point operators
have been defined on a lattice with 2N × 2N points, but it has be shown that
there are only N2 independent phase space point operators on the set GN =
{α = (q, p); 0 ≤ q, p ≤ N − 1}. Here the wigner function has been obtained by
W (α) = T r(Â(α)ρ̂).
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In order to obtain truncated coherent state tomography relation in the FD
Banach space we assume that relation (5.45) is a density matrix in ID Banach
space. Also let

ρN =
∑

α∈GN

λα | N̂α), (5.53)

be a density matrix in FD Banach space which is obtained from truncating the ID
Banach space, where N̂α = 1√

N
Û (α). Using the properties of density matrix we

have

ρ − ρN ≥ 0, (5.54)

which is comparison with semidefinite programming and using complementary
slackness condition, we get

Ẑ(ρ − ρN ) = 0 or Ẑ(ρ − λα | N̂α)) = 0. (5.55)

Similar to supperoperator formalism we obtain

λα = (Q̂α | ρ) = T r[ρQ̂†
α]. (5.56)

The superoperator G is defined by G =| Nα)(Nα |= I
N

is inevitable. Then Qα

operators are defined

Qα = G−1 | Nα) = 1√
N

U (α). (5.57)

Therefore we obtain the tomography formula in FD Hilbert space as the follow:

ρ̂N = 1/N
∑

α∈GN

T r(ρ̂Û †(α))Û (α) = 4N
∑

α∈GN

W (α)Â(α). (5.58)

If N is greater than or equal to the largest Fock state component of a given state,
which by definition is our case, then the discrete probabilities (from the discrete
Wigner) are proportional to the values of the continuous probability distribution
in the discrete set of points (Miranowicz et al., 2001). In this case the FD density
matrix can be approximated as close as we want using ID methods, i.e., linear
ρN → ρ in the N → ∞ limit.

In the projection method we saw that, we can project any operator defined
in ID space to FD space, then projected annihilation and creation operators in the
FD space are given by

as =
s∑

n=1

√
n|n − 1〉〈n|, a†

s =
s∑

n=1

√
n|n〉〈n − 1|. (5.59)

Kuang et al. (1993, 1994) defined the normalized finite dimensional(FD)
coherent states by truncating the Fock expansion of the conventional ID coherent
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states or equivalently by the action of the operator exp(ᾱa†) (with proper normal-
ization) on vacuum state. The state |ᾱ >(s), where |ᾱ >(s)= |ᾱ| exp(iφ), can be
defined by its Fock expansion

|ᾱ >(s)= Ns exp(ᾱa†
s )|0〉 =

s∑

n=0

b(s)
n |n〉, (5.60)

with the Poissonian superposition coefficients

b(s)
n = Ns

s∑

n=0

ᾱn

√
n!

, (5.61)

normalized by

Ns =
(

s∑

n=0

ᾱ2n

n!

)−1/2

, (5.62)

where these truncated CS can be defined by projection method. By definition, the
truncated CS go over into the Glauber CS (1963a,b) in the limit of s �→ ∞.

The Wigner function for coherent pure states is given by Miranowicz et al.
(1994, 2001)

Ws(n, θm) = Ns

s + 1

(
M∑

k=0

|ᾱ|M√
k!(M − k)!

exp[i(2k − M)(θm − φ)]

+
s∑

k=M+1

|ᾱ|M+s+1

√
k!(M − k + s + 1)!

)

, (5.63)

where M = 2n mod(s + 1). If s is greater than or equal to the largest Fock state
component of a given state, which by definition is our case, then the discrete
probabilities (from the discrete Wigner) are proportional to the values of thec
ontinuous phase probability distribution in the discrete set of points (Miranowicz
et al., 2001).

6. PROJECTION METHOD IN THE FINITE DIMENSIONAL AS A
SEMIDEFINITE PROGRAMMING AND QUANTUM TOMOGRAPHY

6.1. Phase Tomography

One possible means of describing the phase of a quantum mechanical fields
is in terms of the Pegg-Barnett hermitian phase operator 
 (Pegg and Barnett,
1989; Barnett and Pegg, 1989; Buzek et al., 1999). This operator is defined in
a finite (but arbitrary large) dimensional Hilbert space. In a (s + 1)-dimensional
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Hilbert space the phase state are defined as

| θ〉 = 1√
s + 1

s∑

n=0

ein
 | n〉, (6.64)

this Hilbert space is spanned by a complete orthonormal set of basis phase state
| θm〉, given by (6.64) with

θm = θ0 + 2πm

s + 1
, m = 0, 1, . . . , s, (6.65)

where θ0 is a reference phase. In terms of the state | θm〉 the Hermitian phase
operator is


θ =
s∑

m=0

θm | θm〉〈θm | . (6.66)

From the definition of the phase state (6.64), we can express the projector | θm〉〈θm |
in terms of the number state basis:

| θm〉〈θm |= (s + 1)−1
s∑

n=0

s∑

n′=0

ei(n′−n)
 | n′〉〈n | . (6.67)

In this case 
θ is orthonormal then we can write the tomography using
semidefinite programming.

At first we assume that

ρ =
∫

θ

T r(ρ
θ )
θdµθ , (6.68)

is a density matrix in Banach space. Also let

ρ ′ =
∑

θ

λθ | 
θ ), (6.69)

be a density matrix in FD Banach space which is obtained from truncating the
higher dimensional Banach space. Using the properties of density matrix we have

ρ − ρ ′ ≥ 0, (6.70)

which is comparison with semidefinite programming we get

F0 = ρ, Fθ =| 
θ ) and xθ = λθ , for θ = θ0, . . . , θ0 + 2π. (6.71)

If we use the complementary slackness condition, and for a feasible (Ẑ, λθ max),
for θ = θ0, . . . , θ0 + 2π , we have

Ẑ(ρ − ρ ′) = 0 or Ẑ(ρ − λθ | 
θ )) = 0. (6.72)
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Similar to superoperator formalism we obtain

λθ = (
̂θ | ρ ′) = T r[ρ ′
θ ]. (6.73)

Therefore we obtain the tomography formula in FD Hilbert space as the follow:

ρ ′ =
∑

θ

| 
θ )(
θ | ρ ′) =
∑

θ

| 
θ )T r[ρ ′
̂θ ]. (6.74)

If we generalized it when θ is continuous, in this case we have

ρ =
∫ θ0+2π

θ0

T r[ρ
θ ]
θdθ. (6.75)

Using (6.66) T r[ρ
θ ] obtain as follows

T r[ρ
θ ] = T r

[

ρ

s∑

m=0

θm | θm〉〈θm |
]

= 2π
∑

m

θm

1

s + 1
PPB(θ )m, (6.76)

where PPB is probability of measuring a particular value of phase and is normalized
so that the integral of PPB(
θ ) over a 2π region of θ is equal to one.

PPB(
θ ) = 1

2π

s∑

n,n′=0

ei(n′−n)φ〈n | ρ | n′〉 = 〈θ | ρ | θ〉, (6.77)

where thus obtained results are in agreement with those of already obtained by
one of the authors in Buzek et al. (1999), Pegg and Barnett (1989), Barnett and
Pegg (1989).

A very important subset of these states will be the physical partial phase
states, of which the coherent state is a particular example. The phase states are
themselves unphysical and so the best attempt at a physical phase measurement
will only project the system into a physical partial phase state (Pegg and Barnett,
1989). In the following, we obtain a physical partial phase state tomography i.e.,
coherent spin states tomography.

6.2. Coherent Spin States Tomography

To reconstruct a mixed or pure quantum state of a spin s is possible through
coherent states: its density matrix is fixed by the probabilities to measure the value
s along 4s(s + 1) appropriately chosen directions in space. Thus, after inverting the
experimental data, the statistical operator is parameterized entirely by expectation
values.

A coherent spin state | n〉 is associated to each point of the surface of the unit
sphere.

| n〉 ≡ exp[−iθm(φ) · ŝ] | s, nz〉, (6.78)
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where m(φ) = (− sin φ, cos φ, 0).
A stereographic projection of the surface of the sphere to the complex plane

give the expansion of a coherent state (Weigert, 1999) as follows

| s, n〉 = 1

(1+ | z |2)s

2s∑

k=0

( 2s//k )1/2zk | s − k, nz〉. (6.79)

In order to show that the density matrix ρ of a spin s is determined unambiguously
by appropriate measurement with a Stern-Gerlach apparatus one precedes as fol-
lows. Distribute Ns = (2s + 1)2 axes | s, n〉 with 1 ≤ n ≤ Ns , over (2s + 1) cones
about the z axis with different opening angles such that the set of the (2s + 1)
directions on each cone is invariant under a rotation about z by an angle 2π

(2s+1) .
An unnormalized statistical density operator is then fixed by measuring the

Ns relative frequencies

pn(nn) = 〈nn | ρ | nn〉, 1 ≤ n ≤ Ns, (6.80)

that is, by the expectation values of the statistical operator ρ̂ in the coherent states
| nn〉. You obtain Ns linear relations between probabilities Pn(nn) and the matrix
elements of the density matrix with respect to the basis |s − k, nz〉. This set of
equations can be inverted by standard techniques if the directions nn are chosen
as described above. For a spin s, the projection operators

| Qn) =| nn〉〈nn |, (6.81)

constitute thus a quorum Q. In general, a quorum is defined as a collection
of (hermitian) operators having the property that their expectation values are
sufficient to reconstruct the quantum state of the system at hand. (Qn | defined as
the dual of the quorum (6.81):

1

(2s + 1)

Ns∑

n=1

Ns∑

n′=1

| Qn)(Qn′ |= δn′
n , 1 ≤ n, n′ ≤ Ns. (6.82)

Therefore, this coherent spin state introduced above is same as the phase state.
In order to obtain spin tomography relation in the finite dimensional Banach

space we assume that

ρ =
∫

T r(ρ | Qm))(Qm | dµm, (6.83)

is a density matrix in higher dimensional Banach space. Also let

ρ ′ =
∑

n

λn | Q̂n), (6.84)
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be a density matrix in FD Banach space which is obtained from truncating the
higher dimensional Banach space. Using the properties of density matrix we have

ρ − ρ ′ ≥ 0, (6.85)

which is comparison with semidefinite programming and using complementary
slackness condition, we get

Ẑ(ρ − ρ ′) = 0 or Ẑ(ρ − λn | Q̂n)) = 0. (6.86)

Similar to supperoperator formalism we obtain

λn = (Q̂n | ρ) = 1

2s + 1
T r[ρQ̂n] = 1

2s + 1
Pn. (6.87)

Therefore we obtain the tomography formula in FD Hilbert space as the follow:

ρs = 1

2s + 1

Ns∑

n=1

PnQ
n, (6.88)

where the coefficients Pn satisfy

0 ≤ Pn ≤ 1, 1 ≤ n ≤ Ns. (6.89)

The operators Qn do even define an optimal quorum since exactly (2s + 1)2

numbers have to be determined experimentally which equals the number of free
real parameters of the (unnormalized) hermitian density matrix ρ̂ . Thus obtained
results are in agreement with those of already obtained by one of the authors
in Buzek et al. (1999), Pegg and Barnett (1989), Barnett and Pegg (1989), and
Weigert (1999).

It is important to note that, although each of the Pn is a probability, they do
not sum up to unity:

0 <

Ns∑

n=1

Pn < (2s + 1)2. (6.90)

This is due to the fact that they all refer to different orientations of the Stern–
Gerlach apparatus, being thus associated with the measurement of incompatible
observables,

[Qn,Qn′ ] �= 0, 1 ≤ n, n′ ≤ Ns, (6.91)

since the scalar product 〈nn|n′
n〉 of two coherent states is different from zero.

The sum in (6.90) cannot take the value (2s + 1)2 since this would require a
common eigenstate of all the operators Qn which does not exist due to (6.91). By
an appropriate choice of the directions nn (all in the neighborhood of one single
direction n0, say), the sum can be arbitrarily close to (2s + 1)2 for states peaked
about n0. Similarly, the sum of all Pn cannot take on the value zero since this would
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require a vanishing density matrix which is impossible. If, however, considered
as a sum of expectation values, there is no need for the numbers Pn to sum up
to unity. Nevertheless, they are not completely independent when arising from a
statistical operator: its normalization implies that

T r[ρs] = T r

[
1

2s + 1

Ns∑

n=1

PnQ
n

]

= 1, (6.92)

turning one of the probabilities into a function of the (2s + 1)2 − 1 = 4s(s + 1)
others, leaving us with the correct number of free real parameters needed to specify
a density matrix (Weigert, 1999).

6.3. Qudit Tomography

We begin with the set of Hermitian generators of SU (D). The generators,
denoted by λj , are labeled by a Roman index taken from the middle of the
alphabet, which takes on values j = 1, . . . , D2 − 1 (Rungta et al.). We represent
the generators in an orthonormal basis |a〉, labeled by a Roman letter taken from
the beginning of the alphabet, which takes on values a = 1, . . . , D. With these
conventions the generators are given by

j = 1, . . . , D − 1:

λj = �a ≡ 1√
a(a − 1)

(
a−1∑

b=1

|b〉〈b| − (a − 1)|a〉〈a|
)

, 2 ≤ a ≤ D,

(6.93)

j = D, . . . , (D + 2)(D − 1)/2:

λj = �
(+)
ab ≡ 1√

2
(|a〉〈b| + |b〉〈a|) , 1 ≤ a < b ≤ D, (6.94)

j = D(D + 2)/2, . . . , D2 − 1:

λj = �
(−)
ab ≡ −i√

2
(|a〉〈b| − |b〉〈a|) , 1 ≤ a < b ≤ D. (6.95)

In Eqs. (6.94) and (6.95), the Roman index j stands for the pair of Roman indices,
ab, whereas in Eq. (6.93), it stands for a single Roman index a. The generators
are traceless and satisfy

λjλk = 1

D
δjk + djklλl + ifjklλl. (6.96)

Here and wherever it is convenient throughout this paper, we use the summation
convention to indicate a sum on repeated indices. The coefficients fjkl , the structure
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constants of the Lie group SU(D), are given by the commutators of the generators
and are completely antisymmetric in the three indices. The coefficients djkl are
given by the anti-commutators of the generators and are completely symmetric.

By supplementing the D2 − 1 generators with the operator

λ0 ≡ 1√
D

I, (6.97)

where I is the unit operator, we obtain a Hermitian operator basis for the space of
linear operators in the qudit Hilbert space. This is an orthonormal basis, satisfying

tr(λαλβ) = δαβ. (6.98)

Here the Greek indices take on the values 0, . . . , D2 − 1; throughout this paper,
Greek indices take on D2 or more values. Using this orthonormality relation, we
can invert Eqs. (6.93)–(6.95) to give

|a〉〈a| = I

D
+ 1√

a(a − 1)

(

−(a − 1)�a +
D∑

b=a+1

�b

)

, (6.99)

|a〉〈b| = 1√
2

(
�

(+)
ab + i�

(−)
ab

)
, 1 ≤ a < b ≤ D, (6.100)

|b〉〈a| = 1√
2

(
�

(+)
ab − i�

(−)
ab

)
, 1 ≤ a < b ≤ D. (6.101)

Any qudit density operator can be expanded uniquely as

ρ = 1

D
cαλα, (6.102)

where the (real) expansion coefficients are given by

cα = Dtr(ρλα). (6.103)

Normalization implies that c0 = √
D, so the density operator takes the form

ρ = 1

D
(I + cjλj ) = 1

D
(I + �c · �λ). (6.104)

Here �c = cj �ej can be regarded as a vector in a (D2 − 1)-dimensional real vector
space, spanned by the orthonormal basis �ej , and �λ = λj �ej is an operator-valued
vector.

In order to treat discrete density operator representation for a qudit we in-
troduce the superoperator formalism and SDP method. Consider a discrete set of
projection operators (Rungta et al.) define in K dimensional Banach space

N−→nα
=| −→nα 〉〈−→nα |= 1

D
(1 + −→

λ · −→nα ), α = 1, . . . , K. (6.105)
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The corresponding superoperator,

G = K

(

(D + 1)
|I )(I |

D
+ T

)

, (6.106)

where, orthonormal eigenoperators of G are λ0 = I/
√

D and T = ∑
j | λj 〉〈λj |.

We are now prepared to write the inverse of G with respect to the left-right
action as

G−1 = 1

K

(
1

D + 1

|I )(I |
D

+ T
)

. (6.107)

Thus the dual operators are given by

|Qnα
) = G−1|Nnα

) = 1

K

(

| Nα) − | I )

D + 1

)

. (6.108)

Using SDP method we get

F0 = 1

D
(1 + c · λ), fα =| Nα) and xα = α for α = 1, . . . , K. (6.109)

From complementary slackness condition we have

α = (Qnα
| ρ). (6.110)

Therefore, tomography relation in FD Banach space can be represented in the
form

ρK =
K∑

α=1

| Nnα
)(Qnα

| ρ) =
K∑

α=1

T r[Q†
nα

ρ]Nnα
= 1

K

K∑

α=1

Nα(I + T r[Nnα
ρ]).

(6.111)
A qubit is two-level system, for which D = 2. There is a one-to-one correspon-
dence between the pure states of a qubit and the points on the unit sphere, or Bloch
sphere (Schack and Caves, 1999). Any pure state of a qubit can be written in terms
of the Pauli matrices (σ1, σ2, σ3), as

N−→n =| −→n 〉〈−→n |
where −→n = (n1; n2; n3) is a unit vector, and 1 denotes the unit matrix. An arbitrary
state ρ, mixed or pure, of a qubit can be expressed as

ρ = 1

2
(1 + −→

S · −→σ ) (6.112)

where 0 ≤| S |≤ 1.
In order to treat discrete density operator representation for a qubit we introduce
the superoperator formalism and SDP method. Consider a discrete set of projection
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operators (Schack and Caves, 1999) in superoperator formalism

N−→nα
=| −→nα 〉〈−→nα |= 1

2
(1 + −→σ · −→nα ), α = 1, . . . , K. (6.113)

The corresponding superoperator,

G =
K∑

α=1

| N−→nα
)(N−→nα

|= 1

4

[

K | 1)(1 | +
∑

α

[−→nα · | −→σ )(1 | + | 1)(−→σ | ·−→nα ]

+
∑

j,k

| σj )(σk |
∑

α

(nα)j (nα)k

]

, (6.114)

generates dual-basis operators and expansion coefficients proportional to those for
the continuous representation (Schack and Caves, 1999) if and only if

0 =
∑

α

−→n α (6.115)

1

3
δjk = 1

K

∑

α

(nα)j (nα)k.

When these conditions are satisfied, the superoperator (6.114) simplifies to

G = K

4

[

| 1)(1 | +1

3

∑

j

| σj )(σj |
]

, (6.116)

with an inverse

G−1 = 1

K

[

| 1)(1 | +3
∑

j

| σj )(σj |
]

, (6.117)

which generates dual-basis operators

Q−→n α
= G−1 | N−→n α

) = 1

K
(1 + 3−→σ .−→n α). (6.118)

Then the density matrix in FD Banach space is given by (4.35). Using SDP method
we get

F0 = 1

2
(1 + S · σ ), fα =| Nα) and xα = λα for α = 1, . . . , K. (6.119)

From complementary slackness condition we have

λα = (Qnα
| ρ) = T r

[
1

2K
(1 + 3−→σ · −→n α)(1 + −→

S · −→σ )= 1

K
(1 + 3

−→
S · −→n α))

]

.

(6.120)
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Therefore, tomography relation (4.42) in finite dimensional Banach space can be
represented in the form

ρK =
K∑

α=1

| Qα)(Nα | ρ) = 1

K

K∑

α=1

Nα(1 + 3
−→
S · −→n α), (6.121)

For M qubits, we define the pure-product-state projector

N (α) = Nα1 ⊗ · · · ⊗ NαM
= 1

2M
(1 + s · nα1 ) ⊗ · · · ⊗ (1 + s · nαM

), (6.122)

and

Q(α) = Qnα1
⊗ · · · ⊗ QnαM

=
(

1

4π

)M

(1 + 3s · nα1 ) ⊗ · · · ⊗ (1 + 3s · nαM
),

(6.123)
where n stands for the collection of unit vectors n1, . . . , nM . Any M-qubit density
operator can be expanded as

ρK =
K∑

α=1

| Nα)(Qα | ρ) = 1

KM

K∑

α1,...,αM=1

×Nα1 (1 + 3
−→
S · −→n α1 ) ⊗ . . . NαM

(1 + 3
−→
S · −→n αM

), (6.124)

where thus obtained result is in agreement with those of already obtained by one
of the authors in Buzek et al. (1999) and Schack and Caves (1999).

7. CONCLUSION

Using the elegant method of convex semidefinite optimization method and
superoperator formalism, we have been able to obtain the quantum tomography in
finite dimensional representation for some set of mixed density matrices. In this
method we have been able to obtain truncated coherent states tomography, finite
phase tomography and coherent spin state tomography, qudit, N -qubit quantum
tomography, where these results that obtained are in agreement with those of
Schack and Caves (1999), Pegg and Barnett (1989), Barnett and Pegg (1989),
Buzek et al. (1999), Weigert (1999).
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